Differential quadrature method based on the highest derivative and its applications
نویسندگان
چکیده
منابع مشابه
The effect of small scale on the vibrational response of nano-column based on differential quadrature method
The present paper deals with the dynamic behavior of nano-column subjected to follower force using the nonlocal elasticity theory. The nonlocal elasticity theory is used to analyze the mechanical behavior of nanoscale materials. The used method of solution is the Differential Quadrature Method (DQM). It is shown that the nonlocal effect plays an important role in the vibrational behavior of nan...
متن کاملBending analysis of composite sandwich plates using generalized differential quadrature method based on FSDT
Nowadays, the technology intends to use materials such as magnesium alloys due to their high strength to weight ratio in engine components. As usual, engine cylinder heads and blocks has made of various types of cast irons and aluminum alloys. However, magnesium alloys has physical and mechanical properties near to aluminum alloys and reduce the weight up to 40 percents. In this article, a new ...
متن کاملDifferential Quadrature Method for the Analysis of Hydrodynamic Thrust Bearings
This paper presents the application of the method of generalized differential quadrature (GDQ) for the analysis of hydrodynamic thrust bearings. GDQ is a simple, efficient, high-order numerical technique and it uses the information on all grid points to approach the derivatives of the unknown function. The effectiveness of the solution technique is verified by comparing the GDQ computed results...
متن کاملStress Analysis of Skew Nanocomposite Plates Based on 3D Elasticity Theory Using Differential Quadrature Method
In this paper, a three dimensional analysis of arbitrary straight-sided quadrilateral nanocomposite plates are investigated. The governing equations are based on three-dimensional elasticity theory which can be used for both thin and thick nanocomposite plates. Although the equations can support all the arbitrary straight-sided quadrilateral plates but as a special case, the numerical results f...
متن کاملThe operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications
In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2007
ISSN: 0377-0427
DOI: 10.1016/j.cam.2006.04.055